Query below returns foreign key constrant columns defined in a database.
Query
select
        ref.tabschema concat '.' concat ref.tabname as foreign_table,
        '>-' as rel,
        ref.reftabschema concat '.' concat ref.reftabname as primary_table, 
        key.colseq  as no,
        key.colname  as fk_column_name,     
        ' = ' as join,
        keypk.colname as pk_column_name,     
        ref.constname as fk_constraint_name
 from syscat.references ref
 left outer join syscat.keycoluse key on 
        key.tabschema = ref.tabschema and key.tabname = ref.tabname 
        and key.constname = ref.constname
left outer join syscat.keycoluse keypk on 
        keypk.tabschema = ref.reftabschema 
        and keypk.tabname = ref.reftabname 
        and keypk.constname = ref.refkeyname 
        and keypk.colseq=key.colseq
Columns
- foreign_table - foreign table name with schema name
- rel - relationship symbol implicating direction
- primary_table - primary (referenced) table name with schema name
- no - id of the column in key. Single coumn keys always have 1, composite keys have 1, 2, ... n for each column of the key
- fk_column_name - foreign table column
- join - "=" symbol indicating join operation for pair of columns
- pk_column_name - primary (referenced) table column
- fk_constraint_name - foreign key constraint name
Rows
- One row represents one foreign key column. If foreign key consists of multiple columns (composite key), each column appears separately.
- Scope of rows: all foregin keys in a database and their columns
- Ordered by foreign table schema name and table name and column ordinal posion in key
Sample results
Foreign keys in Sample database with their columns:

 
                                                                     
                                                                     
                                                                     
                                                                     
                                                                     
                                                                     
                                                                     
                                                                     
                                                                     
                                                                     
                                                                     
                                                                     
                                                                     
                                                                     
                                                                     
                                                                     
                                                                     
                                                                 
                                                             
                                                             
                                                             
                                                             
                                                                 
                                                             
                                                             
                                                                 
                                                             
                                                             
                                                             
                                                             Marcin Nagly
                                                                        Marcin Nagly
                                 IBM Db2
                                                                IBM Db2
                                 SQL Server
                                                                                                SQL Server
                                             Azure SQL Database
                                                                                                Azure SQL Database
                                             Amazon Redshift
                                                                                                Amazon Redshift
                                             Teradata
                                                                                                Teradata
                                             Vertica
                                                                                                Vertica
                                             PostgreSQL
                                                                                                PostgreSQL
                                             MySQL
                                                                                                MySQL
                                             MariaDB
                                                                                                MariaDB